Quick answers to common problems

Vagrant Virtual Development
Environment Cookbook

Over 35 hands-on recipes to help you master Vagrant, and create
and manage virtual computational environments

Chad Thompson PACKT bl b

Vagrant Virtual Development
Environment Cookbook

Table of Contents

Vagrant Virtual Development Environment Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book isfor
Sections

Getting ready
How to do it"

How it works"

There-s more*
Seeaso

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions

1. Setting Up Your Environment

| ntroduction
Installing Vagrant and VirtualBox
Getting ready

How to do it*
Installing Virtual Box
Installing Vagrant

How it works®
Seeaso

[nitializing your first environment
Getting ready

How to do it"

How it works"

Installing Vagrant providers
Getting ready

How to do it"

How it works®
Seeaso
Finding additional Vagrant boxes
Getting ready
How to do it*

Finding boxes
[nitializing an environment with a new box:

Adding a new box without initializing an environment:

Theres more'

Using existing virtual machines with Vagrant
Getting ready

How to do it"

Packaging the VirtualBox machine

Configuring a Vagrant environment

How it works"

2. Single Machine Environments

I ntroduction

Defining a single machine Vagrant environment

How to do it"

Simple Vagrant environment

A defined single machine environment

How it works"

Forwarding ports from a Vagrant machine

How to do it*

How it works"

Starting a GUI with Vagrant
Getting ready

Introducing Atlas
How to do it"

How it works"

Theres more*

Sharing Vagrant guest folders with the host
Getting ready
How to do it"

How it works®
Seeaso
Sharing folders using Network File Systems
Getting ready
How to do it*

How it works"

Theres more'’

Sharing folders with rsync
Getting ready
How to do it*

How it works®
Seeaso
Customizing virtual machine settings (Virtual Box)
Getting ready
How to do it*

How it works"

Customizing virtual machine settings (V Mware Desktop)
Getting ready

How to do it*

How it works"

Sharing environments with source control
Getting ready
How to do it*

How it works"
See aso

3. Provisioning a Vagrant Environment
Introduction

Running basic shell commands

How to do it"

How it works"

Executing shell scriptsin a Vagrantfile
Getting ready
How to do it"

How it works"

Shell scripting in vagrant machines

Script idempotency
See also

Provisioning with external shell scripts
Getting ready
How to do it*

How it works"

Shell provisioning

Provisioning with different shell languages
Seedso

4. Provisioning with Configuration Management Tools
Introduction

Configuration management and Vagrant boxes

Configuring Vagrant environments with Puppet
Getting ready
How to do it*

Setting up the Vagrant environment

Configuring Puppet
How it works"

There-s more*
Seeaso
Configuring Vagrant environments with Chef
Getting ready
How to do it*

Setting up the Vagrant environment

Setting up Chef provisioning

How it works"

Theress more*

M anaging environments with Berkshelf
Provisioning with Chef Server
Seeaso
Provisioning Vagrant environments with Salt
Getting ready
How to do it*

Configuring the Vagrant environment

Configuring Salt provisioning

How it works®
Seeaso
Provisioning Vagrant environments with Ansible
Getting ready
How to do it*

Setting up the Vagrant environment

Setting up Ansible playbooks

How it works"

See also
5. Networked Vagrant Environments

I ntroduction
Creating alocal network
Getting ready

How to do it*

Using a static | P address with a hostsfile

How it works"

There-s more*
Seeaso

Defining a multimachine environment
Getting ready

How to do it"

How it works"

Specifying the order of machine provisioners
Getting ready

How to do it"

How it works"

Creating clusters of Vagrant machines
Getting ready
How to do it*

How it works"

Theres more'’

Configuring DNS with plugins

Configuring a cluster with etcd

Clustering with Apache Mesos
Seedso
6. Vagrant in the Cloud

Introduction
Using Vagrant with Amazon Web Services
Getting ready

How to do it*

Creating a Vagrant IAM account
Setting up aVPC
Creating a security key for Vagrant instances

Installing the Vagrant-AWS plugin

Gathering required information for the provider

Setting up the Vagrant AWS environment

How it works"

Saving configuration data outside the Vagrantfile

Overriding Vagrantfile defaults
Specifying AWS details
Theres more*
Seeaso
Using Vagrant with DigitalOcean
Getting ready
Creating a DigitalOcean API token

Creating a new SSH key pair
How to do it"

How it works®
Seeaso
Sharing local machines with HashiCorp Atlas
Getting ready
How to do it*

How it works®
Seeaso
Sharing web applications with HashiCorp Atlas
Getting ready
How to do it*

How it works®
Seedso
7. Packaging Vagrant Boxes

[ntroduction

Packaging Vagrant boxes from I SO files
Getting ready
How to do it*

Preparing a virtual machine

Packaging the virtual machine as a Vagrant box

Installing the new Vagrant box

How it works"

Theres more*
Seeaso
Building Vagrant boxes with Packer
Getting ready
How to do it*

How it works"

The building blocks of Packer templates

Building Vagrant boxes with Vee\WWee
See aso

Sharing Vagrant boxes
Getting ready

How to do it"

How it works"

Sharing Vagrant boxes with Atlas
Getting ready
How to do it*

Theres more*
See aso
A. Vagrant Plugins

Setting up a Ruby runtime environment
Getting ready
How to do it*

How it works"

See also
B. A Puppet Development Environment

Setting up a Puppetmaster with the puppet apply provisioner
How to do it*

Setting up a source controlled Puppetmaster

Bootstrapping a Puppetmaster
Provisioning nodes with a Puppetmaster

There-s more*
See aso
C. Using Docker with Vagrant

| ntroduction

Running Docker containers with Vagrant

How to do it"
Installing a Docker image from a repository
Building a Docker image with Vagrant
Seeaso

Mixed environments| the Docker provisioner

How to do it"
See aso
| ndex

Vagrant Virtual Development
Environment Cookbook

Vagrant Virtual Development
Environment Cookbook

Copyright ™ 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in aretrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1210215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-374-8

www.packtpub.com

Credits

Author

Chad Thompson
Reviewers

Emilien Kenler

Darius Kristapavicius
Marcelo Pinheiro
Commissioning Editor
Ushalyer

Acquidsition Editor
Richard Brookes-Bland
Content Development Editor
Arwa Manasawala
Technical Editors
Vijin Boricha

Humera Shaikh

Copy Editor

Relin Hedly

Project Coordinator
Danuta Jones
Proofreaders

Simran Bhogal

Bridget Braund

| ndexer

Hemangini Bari
Production Coordinator
Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Chad Thompson is a software developer, architect, and DevOps specialist in Central
lowa. He has 15 years of experience in creating and deploying applications for the Web.
Chad began using Vagrant 3 years ago when he was trying to solve atough problem in
legacy application development. Since then, he has made use of Vagrant and configuration
management tools to support the development and deployment of several web applications
in data centers and cloud platforms. He holds certifications in Puppet and Oracle
technologies and has enjoyed the pleasure of speaking before several technical
conferences and camps. Chad holds two degrees in physics and can be found playing low
brass instruments in ensembles around the state of lowa.

Chad has written articles for O-Reilly web publications and the |lOUG SELECT Journal
(where he briefly worked as an executive editor). Recently, he reviewed the book Creating
Development Environments with Vagrant for Packt Publishing, and recorded a set of video
presentations titled Learning Git by Infinite Skills.

| owe a great measure of gratitude to many people for helping me with the production of
this book. | would like to thank my colleagues at Dice Holdings Inc. for their support and
feedback during the development of the book. | would like to thank Zach Arlen of
FullContact in Denver, CO, for introducing me to Vagrant as a solution to a problem years
ago. Mostly, | would like to thank my family for their continued love and support.

With the publication of this book, | would also like to offer my gratitude to Dr. Robert
Merlino and the late Dr. Nicola D-Angelo of the University of lowa. They both taught me
agreat deal about formulating ideas and teaching others, which | hope serves the readers
of this book.

About the Reviewers

Emilien Kenler, after working on small web projects, began focusing on game
development in 2008 while he was in high school. Until 2011, he worked for different
groups and specialized in system administration.

In 2011, he founded a company that sold Minecraft servers while studying computer
science engineering. Emilien created alightweight 1aaS
(https.//github.com/HostYourCreeper/) based on new technologies (such as Node.js and
RabbitM Q).

Thereafter, he worked at TaDaweb as a system administrator, building its infrastructure
and creating tools to manage deployments and monitoring.

In 2014, he began a new adventure at Wizcorp, Tokyo. In 2014, Emilien graduated from
the University of Technology of Compiagne.

For Packt Publishing, Emilien has also contributed as a reviewer on other books:

¢ Learning Nagios 4, Wbjciech Kocjan (http://www.packtpub.com/learning-nagios-
4/book)

e MariaDB High Performance, Pierre MAVRO (https.//www.packtpub.com/big-data-
and-business-intelligence/mariadb-high-performance)

e OpenVZ Essentials, Mark Furman, (https.//www.packtpub.com/virtualization-and-
cloud/openvz-essentials)

Darius Kristapavicius attended Vilnius University and studied software engineering as
his major subject. In 2009, Darius started working with web application development and
since then, he gained considerable experience and particularly developed various e-
commerce systems. While working in this field, he learned the PHP programming
language and different frameworks (such as Codel gniter and Symfony2). At present,
Darius isworking as a professional web developer and is actively engaged in DevOps
method, process automation, principles of Agile, and other associated subjects of web
development.

Mar celo Pinheiro is a software engineer from Porto Alegre, Brazil. In 2000, he started to
work as aweb designer and programmer with ASP and PHP. Marcelo is still in touch with
Microsoft .NET Framework and Javato run their respective choice of databases for web
applications. Since 2003, he has been using Linux- and Unix-related operational systems,
from Slackware to GoboL inux, Arch Linux, CentOS, and Debian. At present, he uses OS
X, and he also uses FreeBSD to some extent. Marcelo lost afew nights compiling and
applying patches on the Linux kernel to make their desktop work. He is an open source
enthusiast and acts as a problem solver, irrespective of the programming language,
database, or platform.

After afew years, he moved to Sao Paulo to work with newer technologies (such as
NoSQL, cloud computing, and Ruby), where he began to present tech talks with these
technologies in Locaweb, and RS on Rails, the biggest Ruby conference in South Brazil.

As an observer, he created some tools to standardize development using tools (such as
Vagrant and Ruby gems), some of these in their GitHub, in Locaweb to ensure fast
application packaging and reduce deployment rollbacks. In 2013, Marcelo shifted his
career focus to become afull-stack developer and began to follow the DevOps movement.
In 2014, he attended QConSP-International Software Development Conference asa
speaker and spoke about Packer and its use in Locaweb. Currently, Marcelo works as a
DevOps engineer at Moip Pagamentos, where he is responsible for creating continuous
deployment solutions, which cover non-PCI or PCI compliance environments. Heis
currently using Go as a preferable programming language.

He loves playing the guitar and spending time with his beloved wife and his cats, apart
from traveling and drinking beer. He can be found on his blog (http://salizzar.net), Twitter
(https.//twitter.com/salizzar), GitHub (https://github.com/salizzar), and Linkedin
(https.//www.linkedin.com/in/salizzar).

First, | want to thank my wife for her patience, especially on days when | came home from
work, ate something quickly, and went straight to my office, returning only to sleep.
Secondly, | want to thank my friends, who believed in my potential since the beginning
and kept in touch with me despite the distance, and lastly, my mentors Gleicon Moraes
and Roberto Gaiser for the incentive and tips that helped me become a better software
engineer.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
aprint book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <ser vi ce@ackt pub. con» for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for arange of free newsletters and receive exclusive discounts and offers on Packt books

and eBooks.

[@ PACKT! i 1°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutionsto your IT questions? PacktLib is Packt-s online digital
book library. Here, you can search, access, and read Packt-s entire library of books.

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible viaaweb browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Preface

If you have written software on a desktop computer and attempted to deploy your code to
another computer (a server), you have already encountered the challenges presented when
deploying software. Developers and administrators frequently struggle with errors and
defects, when devel opment environments are different from the eventual production
machines. There can be a number of differences introduced when the environments are
different at the operating system level. Development with desktop operating systems (such
as Windows or OS X) can introduce many issues when deploying to production
environments that run a Unix (or Linux) environment.

The introduction of desktop hypervisor software allowed devel opers to develop and test
software using virtual machines. A virtual machine is essentially a system within a system,
wherein devel opers working on a desktop operating system can develop and deploy with a
copy of the operating system and environment that closely mimics the eventual production
environment. When desktop hypervisors became available, development teams found that
they could share development environments by sharing the files used by the hypervisorsto
store the state of virtual machines. In many cases, sharing a virtual machine involved
passing around copies of files on a portable hard drive or a shared network folder.

A few years ago, | encountered this specific example when working on a project that
involved adding new features to software that ran on an environment, which we could not
support with our modern desktop hardware. As many projects reveal, technical debt was
introduced to the application by using some very specific features of the Java
Development Kit (version 1.5), an environment that was impossible to work on with a 64-
bit OS X machine. This machine had dual problems of being a 64-bit machine and it also
lacked native support for Java 1.5 XML libraries. The solution to this problem was the
creation of asingle virtual machine that was shared between devel opers, passing around a
copy of the machine created by ateam lead and using it locally to compile and test our
modifications.

As time passed by, changes to the environment became an issue, as we began struggling
with the differences between not only the development and production environments, but
also between our individual development environments as changes were made, making
sure that each developer was working on the latest version of the virtual machine on that
portable hard drive, which soon had afew different versions itself.

Eventually, the problem of maintaining development environments was large enough to
begin looking for new solutions. Configuration management approaches helped us to start
defining our environment in code, but we still had issues with sharing and maintaining our
base environment. We found immediate use of an open source project called Vagrant,
which was gaining some traction.

Vagrant (http://vagrantup.com) is atool that allows you to define avirtual environment
with code. A single file allows you to define a basic environment for avirtual machine as
well as a series of provisioning actions that prepare the environment for use. Vagrant
works by running code (Vagrantfiles) on top of packaged operating system images called

boxes. The Vagrant code and box files can be versioned and distributed using automated
tooling. This alows you to share virtual machines, which is not much different than the
process of software development that uses source control.

Using Vagrant boxes and provisioning controlled by Vagrantfiles not only simplified the
process of distributing virtual machines (and updates to virtual machines), but it also made
the virtual machines we were working with inexpensive in terms of effort to rebuild. The
amazing thing that we found was that Vagrant not only made it ssmple to distribute virtual
machines, but also gave developers more freedom to experiment and make deeper
modifications to the code without |osing time due to changes in the devel opment
environment that could not be rolled back. This flexibility and a ssimplified on-boarding
process for new developers made it much simpler for the team to spend more time doing
software development (and tackling that technical debt!), rather than attempting to fix and
find problems due to environments.

|-ve found Vagrant to be an invaluable tool in my work. | hope that this book can be a
valuable resource for you in getting started with Vagrant, or perhaps, using Vagrant in new
and different ways.

What this book covers

Chapter 1, Setting Up Your Environment, covers afew basics about hypervisor technol ogy,
the installation of Vagrant and VirtualBox, and some simple recipes to get started with
Vagrant machines.

Chapter 2, Sngle Machine Environments, contains recipes to get started with writing
single machine Vagrantfiles, including booting machines, forwarding ports, and
customizing the virtual machine environment.

Chapter 3, Provisioning a Vagrant Environment, introduces the concept of provisioning
Vagrant machines, installing software, and customizing the environment to develop and
deploy software. This chapter focuses on using shell (bash) scripting to modify the
Vagrant environment.

Chapter 4, Provisioning With Configuration Management Tools, contains simple recipes to
provision Vagrant machines with four common configuration management tools. Puppet,
Chef, Ansible, and Salt. These tools allow easier configuration of machines that have
more complex environments. They also allow Vagrant machines to share the same
provisioning instructions as other environments.

Chapter 5, Networked Vagrant Environments, contains recipes focused on networking
Vagrant machines with external hosts and with each other. We cover afew topics from the
basics of assigning host entries to networking a cluster of Vagrant machines with Consul.

Chapter 6, Vagrant in the Cloud, contains recipes to use Vagrant with cloud providers
(specifically, Amazon Web Services and DigitalOcean). It also contains the use of
Hashicorp-s Atlas tool to share Vagrant environments with remote users.

Chapter 7, Packaging Vagrant Boxes, introduces methods to package Vagrant boxes for
others to use. Recipes include the packaging of boxes using manual and automated tools
and tips to share your box with others on Atlas.

Appendix A, Vagrant Plugins, gives a short introduction on how to extend the capabilities
of Vagrant by developing plugins.

Appendix B, A Puppet Development Environment, expands on the introduction in Chapter
4, Provisioning With Configuration Management Tools, to set up a more robust
configuration environment to develop Puppet scripts. While the focus is on using Puppet
to provision, similar environments can be created to support the configuration
management environment of your choice.

Appendix C, Using Docker With Vagrant, is an introduction to use Vagrant to create,
deploy, and test Docker (http://docker.io) containers. This appendix introduces techniques
to launch Docker containers with Vagrant as well as build and test a complete Docker
environment.

What you need for this book

To use the recipes in this book, you will need:

¢ A development machine capable of running virtual machines with hypervisor
software, such as VirtualBox (http://virtualbox.org) or VMware desktop products
(http://vmware.com). You would want to get started with the freely available
VirtualBox product and later on purchase the plugin to support VMware desktop
products. Keep in mind that you will need a machine that is capable of running both
your host operating system and also the guest operating systems that you will be
creating with Vagrant. You will also want to ensure that you have enough storage
(disk space) for virtual machine files. The disks created by Vagrant machines will
typically be approximately the size required to operate the guest operating systems
(approximately, 5-20 GB of disk space).

¢ |f you plan on running 64-bit guests, you will also want to ensure that your processor
Is capable of Intel hardware virtualization (VT-x). In most cases, processors that
support 64-bit operating systems already have this support built-in (with some
exceptions, such as older Intel Celeron processors). See
https://www.virtual box.org/manual/ch10.html for more background on the
requirements for hardware virtualization.

e Using cloud recipes (particularly, recipes involving Amazon Web Services and
Digital Ocean) will require accounts with cloud providers. Running the examples
might incur charges to your account, so make sure that you understand the financial
impacts of running the examples and how to ensure that all created instances have
been stopped or terminated to avoid extra charges for the use of computational
resources. The recipesin this book are not expensive to run, but they are also not
free. Machines that are left running for a period of time could aso end up costing
more than you had planned on, so make sure that any instance created with Vagrant is
eventually destroyed.

Who thisbook isfor

Thisbook isfor developers and administrators of nearly all skill levels. Throughout the
book, | make a general assumption that you are creating Vagrant machines to support the
development of other software. Vagrant itself does not become interesting or useful until
you use it to support the deployment and devel opment of other software. Vagrant makes it
simple to create local environments that mimic production environments and takes
advantage of the same provisioning technigues used on production servers. If you have a
mature and robust deployment pipeline, Vagrant allows you to reproduce this process on
development machines. If you do not have a robust development pipeline, Vagrant can
help you begin devel oping the scripts and processes, making your development and
deployment environments more consistent. Consistent environments will help you to
reduce the problems associated with the deployment process, which allows you to focus
on producing better software.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There-s more, and See also).

To give clear instructions on how to complete arecipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it”

This section contains the steps required to follow the recipe.

How it works"

This section usually consists of adetailed explanation of what happened in the previous
section.

Theres more*

This section consists of additional information about the recipe in order to make the reader
more knowledgeabl e about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLS, user input, and Twitter handles are shown as follows. —Fhe
Vagrant installer will extract, copy files, and add the vagr ant command to the executable
path.ll

A block of codeis set asfollows:

STWe-- - 0 cothonps staff 1960775680 Jul 24 20:42 ./box-diskl. vidk
STWe-- - 0 cothonps staff 12368 Jul 24 20: 38 ./box. ovf
-rwr--r-- 0 cothonps staff 505 Jul 24 20:42 ./Vagrantfile

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

-*- node: ruby -*-

vi: set ft=ruby :

VAGRANTFI LE_API _VERSI ON = " 2"

Vagr ant . confi gur e(VAGRANTFI LE_API _VERSI ON) do | confi g|

config.vm box = "chad-thonpson/ ubuntu-trusty64-gui"” config.vm provider
"virtual box" do | vbox]|
vbox. gui = true
end
end

Any command-line input or output iswritten as follows:

vagrant box add http://servernane/ boxes/ environnent. box

New terms and important wor ds are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: A new installation of
VirtualBox will display awelcome message in awindow titled Oracle VM Virtual Box
M anager .|l

Note
Warnings or important notes appear in abox like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book what you liked or disliked. Reader feedback isimportant for us asit helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <f eedback @ackt pub. come, and mention the
book-stitle in the subject of your message.

If there isatopic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for al the Packt Publishing books you have purchased. If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our bookg maybe a mistake in the text or the
codd wewould be grateful if you could report thisto us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the

Errata section of that title.
To view the previously submitted errata, go to

https://www.packtpub.com/books/content/support and enter the name of the book in the

search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very serioudly. If you come
across any illegal copies of our worksin any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyr i ght @ackt pub. con» with alink to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
<quest i ons @ackt pub. conr, and we will do our best to address the problem.

Chapter 1. Setting Up Your Environment

In this chapter, we will cover:

¢ Installing Vagrant and Virtual Box

Initializing your first environment

Installing Vagrant providers

Finding additional Vagrant boxes

Using existing virtual machines with Vagrant

| ntroduction

Over the past decade, data centers and server architectures have been revolutionized with
the practice of virtualizatiori the ability to host computational resources that once
depended on hardware in specialized software containers. The ability to use flexible
virtual environments on shared computational resources allowed system administrators to
become more flexible on how software is configured and deployed. More recently, the
advantages of virtualization got extended to the desktop. Software packages such as the
VMware Desktop (Fusion for OS X, Workstation for Windows and Linux) along with
Oracle VirtualBox make it possible to run different operating systems and environments in
the context of the desktop operating systems. Web developers, for example, can run a
Linux-based web server on their desktop without modifying the parent operating system
or running entirely separate physical computers.

Vagrant was originally launched as an open source project by Mitchell Hashimoto with the
core ideato make virtual machines simpler to manage. Virtual machines have been used
for software development for some time. Some software devel opment teams devel oped
workflows around building virtual machines and shared them with other§ often through
the creation of a completely configured virtual machine (referred to as a—golden imagell)
and shared by users. If you have worked with virtual environments for any length of time,
you are likely to be familiar with the process of downloading a multigigabyte virtual
machine or passing around a portable drive with virtual machine files. Vagrant makes it
possible to share consistent and reproducible environments with code rather than binary
files. In practical terms, this means that a virtual machine is often used by checking out the
source definitions from version control and running avagr ant up command rather than
finding ways to create, copy, and manage up-to-date versions of large binary files. More
recently, Vagrant proved to be so useful and pervasive that Hashimoto founded HashiCorp
to support the ongoing development and support of Vagrant. In addition to core Vagrant
development, HashiCorp created add-on software that allows Vagrant to use other
hypervisor software (plugins for VMware Fusion and Workstation) as well as other
software projects. More recently, Vagrant has been extended with the provider framework
In order to make development with containers (such as Docker available at
http://docker.io) ssmpler. Developing with containers gives devel opers the option to create
lightweight isolated Linux environments that can be easier and faster to work with these
virtual machines,

In any case, the first step when using Vagrant is to set up a working environment in order
to define and run Vagrant machines. With Vagrant, a virtual machine and the software that
runs inside the machine can be defined in a special file called a Vagr antfile. A Vagrantfile
defines avirtual machine, how this virtual machine interacts with the outside world, and
how software isinstalled on the virtual machine.

Before we start with Vagrant, let-s review some terminology that we will use in this
chapter and throughout the book.

A virtual machine is acomputing node that runs within a software process that mimics

the behavior of a physical computer. The software process (often called a hyper visor)
provides infrastructure to virtual machines such as computing power (CPU), memory
(RAM), and interfaces to external resources (such as networking interfaces and physical
(disk) storage).

A host machineis acomputer that runs a hypervisor to host virtual machines. A host
machine will, most likely, run one of two types of hypervisor:

o A Type 1 hypervisor that runs natively on host machine hardware. A Type 1
hypervisor does not require a separate operating system; the hypervisor itself controls
access to physical resources and shares them between hosted virtual environments.
Most modern shared virtual environments are Type 1 hypervisors (common examples
include VMware ESX/ESXi, Oracle VM Server, and some versions of Microsoft
Hyper-V). These environments are typically installed as shared resources that define
server infrastructure or other shared resources.

o A Type 2 hypervisor is a software that runs on top of atraditional operating system.

In this case, the hypervisor uses the underlying operating system to control (or
define) resources and gain access to resources. Most use cases for Vagrant use Type 2
hypervisors as host environments for virtual machines and this will be the
environment that will be used throughout this book. The two common Type 2
hypervisors are Oracle VirtualBox and the VMware Workstation / Fusion family of
software. We-H take alook at these products later on in this chapter.

In both cases, the hypervisor is responsible for managing physical resources and sharing
them with one or many virtual machines.

A guest machineisavirtual machine that runs within the hypervisor. The machines that
we will define with Vagrant are guest machines that operate within the environment
controlled by our hypervisor. Guest machines are often entirely different operating
systems and environments from the host environment something we can definitely use to
our advantage when devel oping software to be executed on a different environment from
our host. (For example, a developer can write software within a Linux environment that
runs on a Windows host or vice versa.)

Aswe proceed with the recipes, youH| see that Vagrant is a useful tool to manage the
complexities of hypervisors and virtual machines. Vagrant also alows a consistent API to
operate virtual machines on different hypervisor§ something that can make sharing
virtual environments much ssimpler between teams and people working on different
platforms.

|nstalling Vagrant and Virtual Box

Before we explore how to use Vagrant, wedl first need to install the software required to
manage a virtual machine environment (a hypervisor) as well as the Vagrant software
itself. In thisrecipe, we will install VirtualBox to use it with Vagrant. VirtualBox is an
open source hypervisor that was initially the only hypervisor supported by Vagrant. As
such, VirtualBox is broadly supported by the Vagrant community.

Getting ready

Before we install the VirtualBox and Vagrant software, we-l need to obtain its latest
Versions.

VirtualBox can be downloaded from the project website at http://virtualbox.org. You-!
notice that while VirtualBox has a corporate sponsor (Oracle), the VirtualBox softwareis
open source and freely available for use. VirtuaBox is aso supported on awide variety of
host platforms with afew limitations:

e VirtualBox is supported only on Intel or AMD hardware. The Intel/AMD platform
constitutes the vast majority of personal computing platformsin use today, but there
are a\ways exceptions. Make sure to check the VirtualBox manual for supported
operating systems.

e Whilethe VirtualBox specifications note fairly minimal system requirements, keep in
mind that your single workstation will be supporting two (or more) running operating
systems at the same time. A rough guideline for systems RAM isto have minimal
RAM to support your host operating system, plus the operating system requirements
of theindividual guests. Thiswill vary depending on the guest operating system. For
example, if you are running your Vagrant environments on a Windows machine with
8 GB of RAM, you+l want to limit your Vagrant machine to use 6 GB of RAM,
leaving enough working memory for the host operating system. If the operating
systems are using too much memory, you-l notice some significant performance
Issues as the host operating system begins paging to disk.

The packages downloaded from the Virtua Box site will be native to your particular
operating system. Take particular care when downloading Linux packages; you4l want to
ensure that the downloaded package is compatible with the operating system and system
architecture. (Linux users might also find VirtualBox in repositories provided by your
operating system provider. These packages are often outdated, but they may work with
Vagrant. Be sure to check the minimum versions required in the Vagrant documentation.)

Vagrant packages are operating system-specific and can be downloaded from the Vagrant
website at http://vagrantup.com. Download the version appropriate for your system.

Note
Warning

Vagrant was initially available for download through the use of RubyGems and is still
available through gem i nst al | . Thisversion, however, is significantly outdated and
unable to support most of the features that will be covered in this book. Due to the
complexity of managing Ruby dependencies, the Vagrant maintainers decided to ship
Vagrant as a standalone package with an embedded Ruby interpreter to avoid possible
conflicts. It-s recommended that you use the package distributions from
http://vagrantup.com, wherever possible.

How to do it”

Installing Vagrant and VirtualBox is similar to other software installation for your
particular operating system. The project sites include detailed instructions to install
Vagrant or VirtualBox on the software platform of your choice. We-l go through the
installation of Vagrant and VirtualBox on OS X. There are versions available for Windows
and awide variety of Linux distributions. In any case, the installers, all roughly, follow the
same procedure for the OS X installation demonstrated here.

Installing VirtualBox

1. Download a copy of the installer from the VirtualBox website. In this example, we-
choose the version for OS X hosts.

Bl o= & virtualbox.org & th o O

VirtualBox . ..

Download VirtualBox

Here, you will find links to VirtualBox binaries and its source code.

About
Screenshots VirtualBox binaries

Downloads

By downloading, you agree to the terms and conditions of the respective license.

Cncunaptation » VirtualBox platform packages. The binaries are released under the terms

End-user docs of the GPL version 2.
= VirtualBox 4.3.20 for Windows hosts = x86/amd64
Technical docs = VirtualBox 4.3.20 for 0S5 X hosts = x86/amd64
ChiikibiEe s VirtualBox 4.3.20 for Linux hosts

« VirtualBox 4.3.20 for Solaris hosts =>amdé&4
Community
+« VirtualBox 4.3.20 Oracle VM VirtualBox Extension Pack = All supported
platforms
Support for USB 2.0 devices, VirtualBox RDP and PXE boot for Intel cards.
See this chapter from the User Manual for an introduction to this Extension
Pack. The Extension Pack binaries are released under the VirtualBox Personal
Use and Evaluation License (PUEL).
Please install the extension pack with the same version as your installed

2. Start the VirtualBox installer by opening the downloaded (OS X disk image) file. The
disk image will include an installer along with documentation for VirtualBox and, if
necessary, an uninstall tool. Double-click on the installer package to begin the
VirtualBox installation.

| NN = VirtualBox

1 Double click on this icon:

VirtualBox.pkg

Run the VirtualBox application
from the Applications Folder:

A

TOOL

~

Applications VirtualBox_Uninstall.tool

VirtualBox

Note

The VirtualBox installation will require administrator permissions to both install the
package and to modify system network settings. The installation of the Virtual Box
hypervisor requires the installer to create a set of new network interfaces, which will
allow network communications between the host and guest operating systems.

. Oncetheinstallation is complete, the installer will give you the option to open
VirtualBox. A new installation of VirtualBox will display a welcome messagein a
window titled Oracle VM VirtualBox Manager. Once afew virtual machines are
created, this dialog displays information about the machines created using Virtual Box
(or the Vagrant VirtualBox provider).

@ @

Mew Settings Start Discard

@ Powerad Off

= CentOS
@ Powerad Off

b UbuntuGUI
p @) Powered Off

g mecollective-example_brok...

Oracle VM VirtualBox Manager

- TR G Snapshots

General [E Preview
MName: CentOS

Operating System: Hed Hat (64 bit)

[x] System

Base Memory: 2056 MB

Boot Order: HGF:I} , CDIDVD,
Hard Disk

VT-x/AMD-V, Nested

Paging, PAE/MNX

Acceleration:

Display

Video Memory: 12 MB
Remote Deskiop Server: Disabled
Video Capture: Disabled

[z Storage
Controller: IDE

Controller: SATA
SATA Port 0: CentOS.vdi (Mormal, 20.00 GB)
{2 Audio

Host Driver: CoreAudio
Controller: ICH ACS7

After the installation is completed and we are presented with the VirtualBox M anager

dialog box, we can proceed with the installation of Vagrant itself.

I nstalling Vagr ant

1. Download a copy of the Vagrant installer from the Vagrant website

(http://vagrantup.com). Select the appropriate version for your operating system. In

this case, we will download the OS X universal installer that will download an
installer that will work for both 32 and 64-bit machines. For the features discussed in

this chapter (and for the majority of recipesin the book), you+ want to ensure that

the Vagrant version is 1.5 or greater.

= vagrantup.com (] =L -] E

DOWNLOADS DOCUMENTATION BLOG ABOUT

DOWNLOAD VAGRANT

Below are all available downloads for the latest version of Vagrant (1.6.5). Please
download the proper package for your operating system and architecture. You

DOWNLOAD

can find SHA256 checksums for packages here.

® MAC OS X

Universal (32 and 64-bit)

&
.. WINDOWS

. Universal (32 and 64-bit)

{23 LINUX (DEB)

T . hit | BA_hit

2. The OS X download contains an installation package and an uninstall tool. Double-
click on the installer to begin the installation. The Vagrant package installer isa
native OS X package that will run the OS X software installer. Installing Vagrant will
not be much different than installing other OS X software.

.

[NON) — Vagrant

B

TOOL

uninstall.toaol

VAGRANT

| Magrant » i Vagrant.pkg

3. The Vagrant installer will extract, copy files, and add the vagr ant command to the
executable path. On OS X, thiswill install Vagrant to the default OS X
Appl i cations/ directory. Vagrant is a command-line driven application, however,
there are no programs accessed from the OS X Finder.

4. Verify that Vagrant is working by opening aterminal window and executing the
vagrant versi on command.

@ ® 1. cothomps@cthompson: ~ (zsh)
» vagrant version

Installed Version: 1.6.5

Latest Version: 1.6.5

E a LI O LO-0alLe v 2 S0 & vagra L.

With both software packages installed successfully, we—+e ready to start using Vagrant!
Note

If you are a Ruby user or programmer, you might also note that aversion of Vagrant is
available viathe Ruby gem package manager (gem i nstal | vagrant). When Vagrant 2.0
was released, the official distributions were released as packages with an embedded Ruby
runtime. As such, the versions installed with the gem installer are outdated and will not
work with most of the examplesin this book.

How it works"
What we-ve done hereisinstalled a working Vagrant environment that consists of

e A hypervisor application that can contain virtual machines
e Vagrant, atool that makes managing these machines simpler and available in code

It-s important here to note that Vagrant is ssmply a framework to manage virtual machines,
not an application to create and host virtual machines. When using a Vagrant environment,
you-H often encounter errorsthat are not only related to Vagrant itself, but also related to
the hypervisor application. For this reason, the choice of hypervisor becomes important
when working with Vagrant. Many users can find tools that make VMware Desktop
applications (Fusion and Workstation) simpler to troubleshoot when working with many
virtual machines, whereas some will find it simpler to use external hypervisors (such as
Amazon EC2 or DigitalOcean). Some experimentation might find the right workflow for
you keep in mind that Vagrant is alayer on top of many choices.

See also

e Virtua Box: http://virtualbox.org. In particular, note the install ation instructions for
platforms other than OS X.

e Vagrant: http://vagrantup.com.
e Vagrant installation instructions: https.//docs.vagrantup.com/v2.

Initializing your first environment

Once we have a working Vagrant environment with a hypervisor, we can initialize our first
environment. There are two ways with which we can often work with Vagrant:

¢ |nanew environment with anewly initialized Vagrantfile
¢ |nan environment maintained in source control that has a Vagrantfile included in a
project

Keeping Vagrantfiles and projects in a source control system (such as Git, SVN, and so
on) is apowerful technique to manage and track changesin Vagrant environments. The
use of source control systems allows developers and users to check in Vagrant projects,
which makes modification of the project less risky and makes the sharing of Vagrant
projects much simpler. The use of source code repositories reinforces the concept of
infrastructure as code, giving administrators the ability to recreate environmentsin a
consistent and repeatable way.

No matter how you use Vagrant, knowing how to initialize a new environment will aid
you to effectively use Vagrant. In this example, we will initialize a new environment and
look at the basic configuration of a Vagrantfile.

Getting ready

We-ve seen in the previous section that Vagrant itself is a command-line-driven
application. There are some GUI tools available that can help start and stop environments,
but in order to truly understand how Vagrant works, we-l use the command-line interface
to initialize and interact with our environment.

For this example (and others in the book), you+l need to open aterminal window (a Unix
terminal program in Mac OS X, or Linux, or the windows command application). Verify
that Vagrant isinstalled by typing the command:

vagrant version

A full example of what the command-line session would look likeis given in the
following screenshot:

@ @ 1. cothomps@cthompson: ~/vagrantbook/vagranibook-examples/Chapter1/1.2 Initializing Your First Environment (zsh)

vagrantbook-examples/Chapterl/1.2 Initializing Your First Environment 20d % @
» vagrant version

Installed Version: 1.6.5

Latest Version: 1.6.5

E = L L3 L L da LE W 2 > L (L Yagld £

vagrantbook-examples/Chapterl/1.2 Initializing Your First Environment 20d % @

> 1

If you encounter errors or if the system cannot find Vagrant, you might either need to
repeat the installation steps to install Vagrant in the previous recipe, or adjust your system
path to include Vagrant. In most cases, the installer should complete this step for you.

Before proceeding with this first command, you might also want to make sure that your
desktop machine is connected to the Internet with afairly reliable and fast connection. In
this example, you will be downloading a Vagrant box file that can be afew hundred
megabytesin size. (Using a 12 MB/s download connection, | often note that Vagrant box
downloads can take between 6 to 10 minutes on average.)

Once you-ve verified your command-line environment, we can proceed to initialize our
first environment.

How to do it”

With aterminal window open and the command getting executed in a directory of your
choice, run the command:

vagrant init puppetlabs/ubuntu-14.04-32-nocm

This command should return abrief text summary of your action, informing you that a
new Vagrantfile has been created in the current directory. With thisfile in place, execute
the command:

vagrant up
This command might output several results; we-l note a few important ones:

¢ A status message indicating that the default machine is being started with the
VirtualBox provider.

e |f you are running this command for the first time, a message will also be displayed
noting that the box (in this case, puppet | abs/ ubunt u- 14. 04- 32- no- cm) cannot be
found. Vagrant will automatically attempt to download a box file. This might take a
while depending on the bandwidth available between you and the box provider. After
starting a box for the first time, Vagrant will cache the box file itself so that
subsequent uses of the box (even for different Vagrantfiles) will not trigger the
download.

o After the box file is downloaded, you should see messages that note machine startup,
port forwarding, shared folders, and networking.

After Vagrant returns to the command line, executing the vagr ant ssh command will
open acommand-line interface in the newly initialized virtual machine. In this example,
the operating system is Ubuntu 14.04, which is specified in the return prompt:

®C® 1. vagrant ssh (bash)

» vagrant ssh
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic 1686)

* Documentation: https://help.ubuntu.com/

s

With the virtual machine running, fedl free to modify the maching createfiles, install
programs, or make any modifications you wish. Once you are finished with this
environment, log out of the virtual machine either with acont r ol - d command, or by
typing exi t . At this point, we can either keep the machine active as a background process
or we might wish to:

¢ Stop the machine, keeping the environment available for later use. Thisis

accomplished with thevagr ant halt command.
¢ Destroy the machine, discarding the entire working environment. Thisis

accomplished with thevagr ant dest roy command.
In this example, wel discard the virtual machine by typing vagr ant destr oy.

Vagrant will now prompt you to make sure that you want to destroy the environment; type
y to proceed with destroying the environment and deleting the VM. The entire machine
can be recreated in this directory again with the vagr ant up command.

How it works"

What we-ve done in this example is use Vagrant to create and destroy a virtual maching
an instance of Ubuntu running within the VirtualBox hypervisor. The information that
Vagrant requires to create the environment is stored in a special type of file called a
Vagrantfile. While Vagrantfiles can grow to become quite complex, this Vagrantfile
contains only afew basic items of configuration.

L et-s open the Vagrantfile we-ve created to see what our basic configuration instructs
Vagrant to do. The first thing you- notice when opening thisfileis that the initial
Vagrantfile contains quite a bit of instruction on how to usethefil§ from box definitions
to provisioning instructions. The only parts of the initial file that are not commented are:

o A definition of the Vagrant environment itself
o A definition of the box that serves as the base template of the environment itself

The opening of the Vagrantfile looks like this:

-*- node: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're
doi ng!
VAGRANTFI LE_API _VERSION = "2"

Vagr ant . confi gur e(VAGRANTFI LE_API _VERSI ON) do | confi g|
Al Vagrant configuration is done here. The npbst common configuration
options are docunented and comrent ed bel ow. For a conpl ete reference,
pl ease see the online docunentation at vagrantup.com

Every Vagrant virtual environnment requires a box to build off of.
config.vm box = "puppet!| abs/ ubunt u-14. 04- 32- nocnt
[

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

You might notice afew features of the Vagrantfile itself:

e Take note that the Vagrantfile uses the syntax of the Ruby programming language
(http://ruby-lang.org). In fact, the Vagrantfileitself is Ruby codd something we-
use later on when we create more complex Vagrantfiles.

e The Vagrantfile uses an API version. In this case, version 2: the most current version.
Version 1 Vagrantfiles can still be found in use in afew projects as Vagrant itself can
be backwards compatible. For most new projects, however, the latest revision of the
API will be the one that is used.

e The soleline of uncommented code is the definition of the confi g. vm box parameter.
This parameter was initialized with our i ni t command that used this box name as a
parameter. If we wished to change the base box for our project, we could do that in
the definition of the confi g. vm box parameter.

This Vagrantfile can be expanded to include more complex requirements, which will be
explored in later recipes.

|nstalling Vagrant providers

Vagrant and VirtualBox are a great environment to get started with. However, there might
be instances where the use of other desktop hypervisors would be preferred, such as the
VMware Desktop products (Fusion and Desktop). Recent versions of Vagrant (1.1 or
higher) support VMware as a commercial addition. The VMware Fusion provider was the
first commercial product released by HashiCorp and was quickly followed by VMware
Desktop support. You can find more information about Vagrant and VMWare support at
http://www.vagrantup.com/vmware.

Many users (including myself) immediately found the VMware provider to be
tremendously useful for itsimproved speed and stability of the VMware platform. In this
recipe, we-H look at installing the plugins for VMware Fusion, keeping in mind that the
VMware Desktop products and the Vagrant provider for the VMware Desktop are
commercial products. You-l need to have on hand aVMware Desktop license for your
platform and need to purchase the Vagrant provider for VMware from HashiCorp. In this
example, we-l look at the installation of the provider, but keep in mind that all the
examplesin this book should also work with the freely available Virtua Box or Vagrant
environment.

Getting ready

Before we can start with this example, we-H have to assume that you have purchased and
installed the VMware Desktop product for your platform: Fusion for OS X, Workstation
for Windows or Linux. These products can be purchased from a number of retailers or
directly from VMware (http://www.vmware.com).

With VMware installed, wel have to obtain a copy of the Vagrant provider directly from
HashiCorp. At the time of writing this book, the plugin is not available through third
parties. You can purchase the VMware plugin at http://vagrantup.com/vmware.

0@ < 1 O] & vagrantup.com] th o (4] F

Supercharged
Vagrant
environments.

1 5E

Once you have paid for the plugin, HashiCorp will send an e-mail with the download
Instructions and some basic instructions on how to install the provider. We-Hl walk through
thisinstalation in this recipe.

How to do it”

Vagrant providers rely on Vagrant-s plugin capabilityf the ability to extend Vagrant
through the Ruby environment. To install the plugin, open a command-line environment
and execute Vagrant with the pl ugi n command.

In this example, wedl install the VMware Fusion plugin, athough the plugin installation
will be similar for any number of providers. (See
https://github.com/mitchel|h/vagrant/wiki/Available-Vagrant-Plugins for arelatively up-
to-date listing of maintained plugins.)

1.

Install the VMware Fusion plugin with thevagrant plugin install vagrant-
vmar e- f usi on command.

Thiswill download the plugin and add the code to your local Vagrant installation.
With many plugins, thiswill be thefinal steg installation itself is pretty
straightforward. In this case, however, we-Hl need to install the license for the plugin.

Install the plugin license using the pi ugi n I'i cense command from the directory
where the license file was placed:

vagrant plugin |license vagrant-vmare-fusion-license.lic
Thiswill install the plugin license and ready the plugin for use.
Verify the plugin installation with:

vagrant plugin |ist

A list of currently installed pluginsis returned, including some that are packaged with
the distribution, these are marked system.

Start a VMware environment by initializing a new environment. Thiswill be
identical to the stepsin the prior recipe.

With aterminal window open and the command executing in a directory of your
choice, executethevagrant init puppetlabs/ubuntu-14. 04- 32- nocmcommand

Thiswill create a new Vagrantfile that isidentical to the previous example. Thistime,
wed| start the environment with the provider option:

vagrant up “provider=vmnare_f usion

A boot sequence will be presented with the difference to the prior example being that
anew environment (box file) will be downloaded and booted. This new machine will
use the VMware Fusion hypervisor to manage the Vagrant virtual machine.

How it works"

Thisexample installed a new bit of functionality within Vagrant; the expanded
functionality of plugins allows Vagrant to manage different virtual environments with an
identical API. In general, Vagrant plugins can be used to extend Vagrant in a number of
different wayg providers are

You might have noticed that the only difference in starting the Vagrant environment from
the previous recipe was the use of the provider option when starting the machine. If you
want to ensure that a virtual machine always uses a specific provider when starting, set the
VAGRANT DEFAULT_PROVI DER=vmar e_f usi on environment variable.

Setting an environment variable depends on your system and terminal shell in a Unix-
based system (OS X, Linux); you might set this variable in your login shell profile (either
. bash_profileor.bashrc), and for Microsoft Windows, thisvariable is set in the
Environment Variables* dialog. Consult the documentation for your platform on how
to create system variables.

With aVVMware Desktop plugin installed, you can use VMware to manage virtual
environments, whereas with other plugins, we can also use Vagrant to manage virtual
machines locally with other hypervisors (for example, Paralels on OS X) or evenin
remote hypervisors (for example, VMware ESXi environments, Amazon Web Services).
We-H see examples on how to use Vagrant in these environments in later recipesin the
book.

See also

e VVMware: http://vmware.com. VMware provides awide variety of hypervisor
platforms from the desktop platforms used in this book to hypervisor infrastructures
for data center management.

o Alist of currently available Vagrant plugins:
https://github.com/mitchel|h/vagrant/wiki/Available-Vagrant-Plugins. The Vagrant
project keeps alist of plugins that are available to extend the functionality of Vagrant.
The VMware providers are only one example of awide variety of plugins available.

Finding additional Vagrant boxes

Up to this point, we have provisioned Vagrant environments using asingle boX aversion
of Ubuntu 14.04 LTS (Trusty Tahr) provided by PuppetL abs, a company that sponsors the
open source Puppet configuration management software as well as commercial Puppet
products. (We-l see how to use Puppet with Vagrant in later recipes.) There are two
reasons why we used this box in the examples:

o PuppetL abs packaged Ubuntu 14.04 boxes for afew different hypervisors
(VirtualBox and VMware).

¢ PuppetLabs, as a company, offered arelatively stable set of boxes to develop Puppet.
These should be broadly available after the publication of this book.

Most users will likely want to use Vagrant boxes that reflect the eventual production
deployment environment of the code being developed inside Vagrant boxes and not just
the single distribution we-ve seen so far.

To use different operating systems and operating environments, we need to obtain (or
create) different Vagrant boxes. A Vagrant box is a packaged virtual machine that consists
of avirtual machine image (aset of VMDK filesfor VMware, OVF files for Virtua Box)
and a metadata file that specifies (at minimum) the provider that the box file uses along
with other information that box users might need. Several Vagrant workflows use a base
box along with provisioning to create new development environments, where the base box
IS the operating system that is eventually used in a production environment. For example,
If a production environment has standardized on CentOS 6.5 as an operating system to
host a web application, developers can use a Cent OS 6.5 Vagrant box as a devel opment
environment, ensuring that the web server versions and configurations are identical
between environments.

There are many cases where you will want to build an environment, but in this example,
we| take alook at finding Vagrant boxes on the Vagrant Cloud (http://vagrantcloud.com).

Getting ready

Vagrant Cloud is an offering from HashiCorp to use and share Vagrant environments.
Vagrant Cloud allows box providers and other users the ability to publish and share
Vagrant boxes with other users. In many cases, these shared boxes will have certain
software preinstalled for your use, and in other cases, the boxes will be basic operating
system installations for you to provision and configure.

800 Vagrant Cloud

== ‘V http ﬂ vagrantcloud com ¢ | Beade
»Jo)(z][a](p)[+]v! deom _____________________________________ ClRee -

ﬂ VAGRANT CLOUD DISCOVER BOXES » LOGIN » JOIN VAGRANT CLOUD »

CONNECTING
VAGRANT
TO THE WORLD

JOIN VAGRANT CLOUD ?»

Basic accounts are completely free, paid Features starting at
just $6/month.

VAGRANT BOX DISCOVER
SHARE DISTRIBUTION BOXES

The navigation option DISCOVER BOXES on the top menu will take you to arepository
(https.//vagrantcloud.com/discover) for you to search for boxes and view information
about box versions and what might be installed.

Note

A note on types of boxes

In this example, we will be downloading and using 64-bit Vagrant boxes, which might
cause problems with some environments. In particular, 64-bit guests require systemsto
have Intel processors that support Intel Virtualization Technology (Intel VT) and have
Intel VT support enabled in the BIOS settings of the host operating system. If you are
unsure of the support available for your platform, there is a useful article on the VMware
Knowledge Base with some tools to test the ability of your desktop system to support 64-
bit guests. The article can be found here:

http://kb.vmware.com/selfservice/microsites/search.do?
language=en US& cmd=displayK C& external 1d=1003944

